ANALISIS TERJADINYA *REJECT* PCB LED PADA SMT *LINE* DENGAN MENGGUNAKAN METODE *ROOT CAUSE ANALYSIS FISHBONE* DAN *FMEA* DI PT VJB

Ir. Refdilzon Yasra¹.ST.MT., Ir.Herman²ST.MT., ³Azhar Firdaus

^{1,2}Universitas Ibnu Sina, Jl. Teuku Umar, Lubuk Baja, Kota Batam ³ Program Studi Teknik Industri, Universitas Ibnu Sina, Batam

e-mail: refdilzon.yasra@uis.ac.id, ²Herman@uis.ac.id, ³1810128425139@uis.ac.id

Abstrak

PT Venturindo Jaya Batam adalah perusahaan yang bergerak dibidang jasa produksi barang elektronik yang lebih dikenal dengan sebutan Electronic Manufacturing Services (EMS) yang menyediakan solusi "One-Stop-Solution" yang komprehensif. tujuan dari penelitian ini adalah untuk mencegah terjadinya reject Circuit Board Light Emitting Diode (PCB LED) pada Surface Mount Technologi (SMT) Line agar persentase reject perusahaan menurun. Metode yang digunakan adalah root cause analysis Fishbone dan Failure Mode and Effect Analysis (FMEA). Data yang digunakan dalam penelitian ini didapatkan dari hasil observasi, wawancara dan studi literature. Proses produksi Printed Circuit Board Light Emitting Diode (PCB LED) di SMT Line melalui 3 tahapan yaitu: Printing, Mounting, dan Oven Reflow. Dari ketiga tahapan tersebut memiliki penyebab reject berbeda-beda dengan nilai RPN yang didapatkan dari nilai (severity (S) X occurance (O) X detection (D) = Risk Priority Number (RPN). Hasil dari penelitian ini adalah perbandingan antara sebelum dan sesudah upaya pencegahan dan recommended action yang diterapkan sehingga tingkat defect yang terjadi pada setiap masing-masing proses menjadi berkurang. Sehingga bisa menurunkan persensentase reject sesuai dengan yang diharapkan perusahaan.

Kata kunci — 3 Printed Circuit Board Light Emitting Diode (PCB LED), Reject, Failure Mode and Effect Analysis (FMEA).

Abstract

PT Venturindo Jaya Batam is a company engaged in the production of electronic goods, better known as Electronic Manufacturing Services (EMS) which provides a comprehensive "One-Stop-Solution" solution.purpose of this study is to prevent the occurrence of Circuit Board Light Emitting Diode (PCB LED) rejects on Surface Mount Technology (SMT) Line percentage reject decreases. The method used is root cause analysis Fishbone and Failure Mode and Effect Analysis (FMEA). The data used in this study were obtained from observations, interviews and literature studies. The production process of the Printed Circuit Board Light Emitting Diode (PCB LED) at the SMT Line through 3 stages, namely: Printing, Mounting, and Oven Reflow. Of the three stages, the causes of rejection are different with the RPN value obtained from the value (severity (S) X occurrence (O) X detection (D) = Risk Priority Number (RPN) . the reflow oven decreased in valueefforts that can reduce defects are by providing prevention proposals and actions which are then applied so that the level of defects occur in each process is reduced Preventative that . recommended with what the company expects.

Keywords—3 Printed Circuit Board Light Emitting Diode (PCB LED), Reject, Failure Mode and Effect Analysis (FMEA).

PENDAHULUAN

PT Venturindo Jaya Batam adalah perusahaan yang bergerak dibidang jasa produksi barang elektronik yang lebih dikenal dengan sebutan *Electronic Manufacturing Services* (EMS) yang menyediakan solusi "*One-Stop-Solution*" yang komprehensif. PT Venturindo Jaya Batam (VJB) didirikan pada tahun 1993, dengan area produksi utama seluas 6.800 meter persegi atau 68.000 kaki persegi.

PT. Venturindo Jaya Batam merupakan perusahaan yang ada di batam terletak di kompleks SM Business Center Block B, Jalan Yos Sudarso Batu Ampar, Batam Indonesia 29432. PT Venturindo Jaya Batam (VJB) juga melengkapi desain hiasan dan pembuatan fungsi usaha kemudian mendapatkan sertifikat dengan berbagai macam kualitas dan sistem lingkungan, jadi perusahaan bisa menyediakan layanan barang-barang untuk permintaan dalam persiapan untuk mengisi kebutuhan yang belum terpenuhi untuk *Multi-Nasional Company* (MNC) baik di Batam dan seluruh wilayah Indonesia.

1 . Tabel 1 Data Running

	1 . Tuber i Buttu Russining			
Bulan/tahun	Mesin/Tahun rakitan	Jumlah <i>Running</i>	Reject	%reject
Februari 2022	Panasonic SP22G(2000), Yamaha YV100X(2000), Nousstar K2-AR8820- 480(2000)	1000	70	7
Maret 2022	Panasonic SP22G(2000), Yamaha YV100X(2000), Nousstar K2-AR8820- 480(2000)	1040	81	8
April 2022	Panasonic SP22G(2000), Yamaha YV100X(2000), Nousstar K2-AR8820- 480(2000)	990	79	8
Mei 2022	Panasonic SP22G(2000), Yamaha YV100X(2000), Nousstar K2-AR8820- 480(2000)	910	56	6
Juni 2022	Panasonic SP22G(2000), Yamaha YV100X(2000), Nousstar K2-AR8820- 480(2000)	1040	62	6
Juli 2022	Panasonic SP22G(2000), Yamaha YV100X(2000), Nousstar K2-AR8820- 480(2000)	1050	75	7
	Total	6030	423	42
	Rata-rata	1005	70.5	7

Dari data pengamatan diatas sangat berdampak pada perusahaan yang mengharuskan untuk menambah tenaga kerja bagian repair, waktu proses produksi yang bertambah, kualitas hasil produksi yang menurun akibat terdapat bekas *repair* pada *Printed Circuit Board* (PCB),dan biaya produksi yang bertambah. Jika hal ini tidak segera diatasi, maka akan sangat merugikan perusahaan. metode fishbone dipilih untuk menganalisa penyebab dari sebuah masalah atau kondisi, metode FMEA dipilih karena untuk menganalisa kemungkinan masalah atau peristiwa yang tidak diinginkan terjadi sehingga dapat mengambil tindakan untuk mencegahnya, dengan demikian dapat mempertahankan kualitas dan kuantitas tetap stabil.

METODE PENELITIAN

1.1 Pengumpulan Data

Penelitian ini dilakukan PT. Venturindo Jaya Batam merupakan perusahaan yang terletak di kompleks SM Business Center Block B, Jalan Yos Sudarso Batu Ampar, Batam Indonesia 29432. Penelitian ini dilaksanakan selama sebelas bulan yaitu mulai bulan Januari sampai dengan November 2022. Pengumpulan data dilakukan dengan cara observasi dan wawancara kepada supervisor, teknisi, dan leader shift pagi pada devisi SMT *Line* untuk mengetahui tingkat *reject*, dan berdasarkan data perusahaan berupa data *record reject*.

1.2 Uji Keseragaman Data

Uji keseragaman data adalah pengujian yang dilakukan terhadap data pengukuran untuk mengetahui apakah data yang diukur telah seragam dan berasal dari satu sistem yang sama. Uji keseragaman data dilakukan dengan tahapan perhitungan sebagai berikut:

a. Menghitung nilai rata-rata

Rumus menghitung nilai rata-rata sebagai berikut:

$$\bar{x} = \frac{\sum x_i}{n}$$

Keterangan:

 \bar{x} = nilai rata-rata data

 x_i = nilai x ke-i n = jumlah data

b. Menghitung standar deviasi

Standar deviasi adalah akar kuadrat dari varians dan menunjukkan standar penyimpangan data dan tingkat penyebaran data terhadap nilai rata-ratanya. Standar deviasi yang semakin kecil menunjukkan tingkat penyebaran data yang semakin baik, standar deviasi dapat dihitung dengan rumus sebagai berikut:

$$\sigma = \left\lceil \sqrt{\frac{\sum (\bar{X} - Xi)^2}{N - 1}} \right\rceil$$

Keterangan:

 σ = Standar deviasi

 $x_i = \text{Nilai x ke-i}$

 \bar{x} = Nilai rata-rata data

n = Jumlah data

c. Menghitung Batas Kontrol

Menghitung batas control dengan menggunakana rumus berikut i-i

Batas Kontrol Atas (BKA) = $\bar{X} + k. \sigma$

Batas Kontrol Bawah (BKB) = $\bar{X} - k_{\bullet} \sigma$

Keterangan:

 \overline{x} = Nilai rata-rata data σ = Standar deviasi

k = Tingkat kepercayaan

1.3 Uji Kecukupan Data

Uji kecukupan data adalah proses pengujian yang dilakukan terhadap data pengukuran untuk mengetahui apakah data yang diambil untuk penelitian sudah mencukupi untuk dilakukan perhitungan waktu baku. Pengujian kecukupan data dipengaruhi oleh faktor-faktor sebagai berikut (Sutalaksana, 2006):

a. Tingkat ketelitian Tingkat ketelitian menunjukkan penyimpangan maksimum dari hasil perhitungan terhadap nilai waktu yang sebenarnya.

b. Tingkat kepercayaan Tingkat kepercayaan menunjukkan besamya probabilitas bahwa data yang sudah diambil berada dalam tingkat ketelitian yang sebelumnya telah ditentukan.

Rumus yang digunakan adalah sebagai berikut:

$$N' = \left[\frac{\frac{k}{s} \sqrt{(N \sum X_i^2)} - (\sum X_i)^2}{\sum X_i} \right]^2$$

Keterangan:

N': Jumlah pengukuran yang diperlukanN: Jumlah pengukuran yang telah dilakukan

K: Tingkat kepercayaan s: Tingkat ketelitian Xi: Data ke-i

1.4 Pengolahan Data

Setelah data yang diperoleh dari lapangan dikumpulkan, maka tahap selanjutnya adalah mengolah data tersebut. Adapun metode yang digunakan dalam pengolahan data pada penelitian ini yaitu metode *Fishbone* dan FMEA. Metode *Fishbone* untuk mengidentifikasi dan mengorganisasi penyebab-penyebab yang mungkin timbul dari suatu efek spesifik, dan metode FMEA menganalisa kemungkinan masalah atau peristiwa yang tidak diinginkan terjadi sehingga dapat mengambil tindakan untuk mencegahnya.

Pengolahan data dengan melakukan uji keseragaman data. Untuk menghindari data data yang ektrim di gunakan pada penliatian ini. Setelah data seragam, yang mana semua data dalam batas batas kendali digunakan untuk melakukan pengjuian data.

HASIL DAN PEMBAHASAN

3.1 Pengumpulan Data

Pengumpulan data dilakukan dengan mengumpulkan data jenis *reject* produksi *Printed Circuit Board Light Emitting Diode* (PCB LED) pada bulan Februari 2022 – Juli 2022.

2 Tabel 2 Data reject

		Jenis <i>reject</i>		Jumlah	
Bulan	LED pecah (<i>broken</i>)	LED mati (unconnect)	PCB patah(crack)	Produk Reject	
Februari	1	69	0	70	
Maret	8	72	1	81	
April	4	75	0	79	
Mei	3	53	0	56	
Juni	3	60	0	62	
Juli	6	69	0	75	
Total	25	398	1	423	

3.2 Pengolahan Data

Pengolahan data pada penelitian ini terdiri dari uji keseragaman data, uji kecukupan data, diagram pareto, diagram *fishbone* dan FMEA.

E-ISSN: 2541-2647 DOI: https://doi.org/10.36352/jt-ibsi.v8i01

3.2.1 Uji Keseragaman Data

Uji keseragaman data untuk memastikan bahwa data yang dikumpulkan berada di dalam batas kontrol. Sebelum menentukan batas kontrol atas (BKA) dan batas kontrol bawah (BKB), penulis harus menghitung nilai rata-rata dan standar deviasi dari data jumlah produk dan data *reject* yang sudah di ambil sebagai berikut:

Tabel 3 Data jumlah produksi dan data reject

Bulan	Produk Baik	Jumlah <i>Reject</i>	Jumlah Produksi	%reject
Februari 2022	930	70	1000	7
Maret 2022	959	81	1040	8
April 2022	911	79	990	8
Mei 2022	854	56	910	6
Juni 2022	978	62	1040	6
Juli 2022	975	75	1050	7
Total	5607	423	6030	42
Rata-rata	934.50	70.50	1005	7

1. Nilai rata-rata

$$\bar{x} = \frac{\sum x_i}{n}$$

 \bar{x} = nilai rata-rata data

 $x_i = nilai x ke-i$

n = jumlah data

$$\bar{x} = \frac{7+8+8+6+6+7}{6}$$

$$\bar{x} = \frac{42}{6}$$

$$\bar{x} = 7$$

2. Standar Deviasi

$$\sigma = \left[\sqrt{\frac{\sum (\bar{X} - Xi)^2}{N - 1}} \right]$$

2.3

 σ = Standar deviasi

 $x_i = \text{nilai x ke-i}$

 \bar{x} = nilai rata-rata data

n = jumlah data

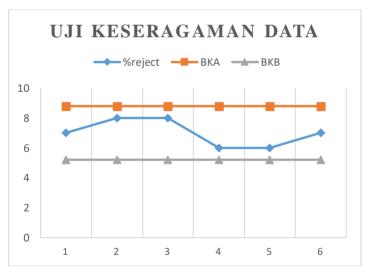
$$\sigma = \sqrt{\frac{(7-7)^2 + (8-7)^2 + (8-7)^2 + (6-7)^2 + (6-7)^2 + (7-7)^2}{6-1}}$$

$$\sigma = \sqrt{\frac{4}{5}}$$

$$\sigma = 0.89$$

3. Perhitungan batas-batas kontrol

a. Batas kontrol atas (BKA)


BKA =
$$\bar{X} + 2. \sigma$$

= 7 + (2*0.89)
= 7 + 1,78
= 8.78

b. Batas kontrol bawah (BKB)

BKB =
$$\overline{X}$$
 - 2. σ
= 7 - (2*0.89)
= 7 - 1.78
= 5.22

Dari perhitungan uji keseragaman data yang telah dilakukan diatas, maka dibuatkan dalam grafik data yang dinyatakan seragam, sehingga bisa digunakan untuk proses pengolahan data selanjutnya.

Grafik 1 Uji Keseragaman Data

3.2.2 Uji Kecukupan Data

Data yang terkumpul dari hasil pengamatan lansung dilapangan kemudian dilakukan uji kecukupan data untuk mengetahui apakah data yang di ambil telah mencukupi untuk penelitian atau belum dengan tingkat kepercayaan dan ketelitian sebagai berikut:

N' = Jumlah Pengamatan yang seharusnya dilakukan. =?

 $k \hspace{1cm} = 2 \hspace{1cm}$

s = 5% atau 0.05

Tingkat ketelitian menunjukan penyimpangan maksimum hasil pengukuran dari waktu penyelesaian sebenarnya. Hal ini biasanya dinyatakan dalam persen. Sedangkan tingkat kepercayaan menunjukan besarnya kepercayaan pengukuran bahwa hasil yang diperoleh memenuhi syarat tadi. Ini pun dinyatakan dalam persen. Jadi tingkat ketelitian 5% dan tingkat kepercayaan 95% memberi arti bahwa pengukuran membolehkan rata-rata hasil pengukuranya menyimpang sejauh 5% dari rata- rata sebenarnya dan kemungkinan berhasil mendapatkan hal

ini adalah 95%. Atau dengan kata lain berarti bahwa sekurang-kurangnya 95 dari 100 harga ratarata dari sesuatu yang diukur akan memiliki peyimpangan tidak lebih dari 5%.

Jika N' < N maka data dapat dikatakan sudah mencukupi dan sebaliknya jika N' > N maka data yang telah dikumpulkan belum mencukupi, sehingga perlu dilakukan penambahan data dan di uji kembali.

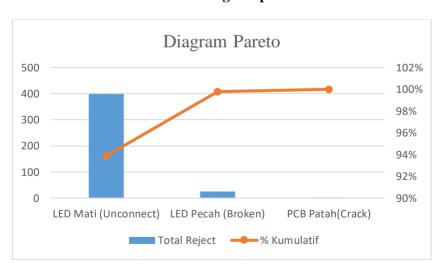
N =Jumlah Pengamatan yang sudah dilakukan. = 6 $X_i =$ Total data Pengamatan. = 42

 $X_i^2 = 298$

$$N' = \left[\frac{\frac{k}{s} \sqrt{(N \sum X_i^2)} - (\sum X_i)^2}{\sum X_i} \right]^2$$

$$N' = \left[\frac{\frac{2}{0.05} \sqrt{(6 * 298)} - (42)^2}{42} \right]^2$$

$$N' = \left[\frac{40 \sqrt{1788} - 1764}{42} \right]^2$$

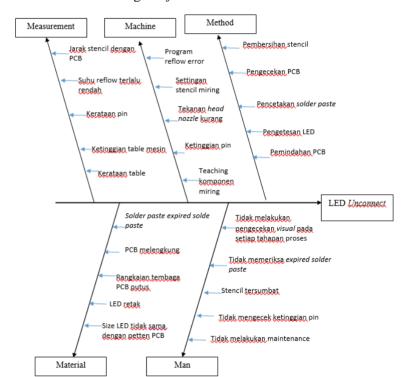

$$N' = 2.98$$

Berdasarkan hasil uji keseragaman dan uji kecukupan data, dibutuhkan (N') 2,98 < data pengamatan (N) 6. Dapat diambil kesimpulan bahwa data yang dikumpulkan penulis dinyatakan mencukupi dan dapat digunakan untuk melakukan penelitian.

3.2.3 Diagram Pareto

E-ISSN: 2541-2647

Diagram pareto dilakukan untuk memperoleh faktor yang menjadi prioritas utama untuk dilakukan perbaikan dalam peningkatan efektivitas. Analisis dilakukan dengan membuat diagram pareto dari persentase jenis-jenis *reject*, sehingga mendapatkan jenis *reject* apa yang paling dominan, diagram pareto pada jenis *reject* LED mati (Unconnect) yang paling dominan dengan persentase total reject 94% yang dapat dilihat pada tebel berikut ini:


Grafik 2 Diagram pareto

3.2.4 Diagram Fishbone

Pemahanam mengenai akar masalah akan membantu peneliti menemukan tindakan yang dapat dilakukan untuk mengatasi penyebab terjadinya cacat. Metode yang digunakan peniliti dalam mengidentifikasi masalah dan melakukan usulan pencegahan terjadinya cacat yaitu menggunakan fishbone diagram. Berikut hasil fishbone diagram yang didapatkan pada reject Light Emitting Diode (LED) mati (Unconnect).

Berdasarkan *fishbone* diagram diatas faktor-faktor yang menyebabkan *reject Light Emitting Diode* (LED) mati (*Unconnect*) meliputi:

- 1. Faktor manusia, Tidak melakukan pengecekan visual pada setiap tahapan proses, tidak memeriksa *expired solder paste*, stencil tersumbat, tidak mengecek ketinggian pin, tidak melakukan maintenance.
- 2. Faktor mesin, program reflow error, settingan stencil miring, tekanan head nozzle kurang, ketinggian pin, teaching komponen miring.
- 3. Faktor metode, pembersihan stencil, pengecekan PCB, pencetakan *solder paste*, pengetesann LED, pemindahan PCB.
- 4. Faktor material, Solder paste expired, PCB melengkung, rangkaian tembaga PCB terputus, LED retak, size LED tidak sama dengan PCB.
- 5. Faktor pengukuran, jarak stencil dengan PCB, suhu reflow terlalu rendah, kerataan pin, ketinggian table mesin, kerataan table.

Gambar 1 Diagram fishbone

Setelah didapatkan akan permasalahan yang menyebabkan *Light Emitting Diode* (LED) mati (*Unconnect*), maka dilakukan usulan pencegahan berikut ini:

E-ISSN: 2541-2647 DOI: https://doi.org/10.36352/jt-ibsi.v8i01

Tabel 4 Permasalahan dan usulan pencegahan

		Tabel 4 Permasalahan dan us	виган репседанан			
No	Faktor	Permasalahan	Usulan Pencegahan			
		Tidak melakukan pengecekan visual pada setiap tahapan proses	Melakukan pengecekan visual pada setiap tahapan proses			
		Tidak memeriksa <i>expired solder</i> paste	Perhatikan kembali masa <i>expired</i> solder paste			
1	Manusia	Stencil tersumbat	Membersihkan <i>stencil</i> maksimal setiap 3 kali setelah printing			
		Tidak melakukan maintenance	Melakukan maintenance			
		Tidak mengecek ketinggian pin	Lakukan pengecekan ketinggian pin			
		Ketinggian pin	Melakukan pengecekan sebelum			
		Settingan stencil miring	mulai produksi			
2	Mesin	Tekanan head nozzle kurang	Mengecek kondisi selenoid angin			
		Program reflow error	Melakuakn reset pada PC mesin			
		Teaching komponen miring	Melakukan <i>adjust</i> pada <i>teaching</i> program mesin			
		Pembersihan stencil	Membersihkan <i>stencil</i> maksimal setiap 3 kali setelah printing			
	Metode	Pengecekan PCB	Melakukan pengecekan pada setiap tahapan proses			
3		Pencetakan solder paste	Mencetak solder paste sampai menutupi patten			
		Pengetesan LED	Melakukan tes menyala LED			
		Pemindahan PCB.	Perhatiakan posisi Printed Circuit Board (PCB) saat dipindahkan dipastikan aman dan tidak miring pada jalur rel <i>conveyor</i> dan <i>megazine</i>			
		Solder paste expired	Memeriksa dan mengganti solder paste yang expired			
		PCB melengkung	Setting kerataan pin dan ketinggian table			
4	Material	Rangkaian tembaga PCB terputus	Mengganti PCB			
		LED retak	Memperhatikan tekanan nozzle			
		Size LED tidak sama dengan PCB.	Perhatikan LED dan PCB sebelum running			
		Jarak stencil dengan PCB	Setting jarak antara stencil dengan PCB jangan terlalu renggang			
5	Dangulzuran	suhu reflow terlalu rendah	Mengecek kodisi pemanas pada reflow			
3	Pengukuran	kerataan pin	Memastikan kerataan pin dengan PCB			
		ketinggian table mesin kerataan table	Memeriksa ketinggian <i>table</i> Memeriksa kerataan table			

E-ISSN: 2541-2647 DOI: https://doi.org/10.36352/jt-ibsi.v8i01

3.2.5 Failure Mode And Effect Analysis (FMEA).

Failure Mode And Effect Analysis (FMEA) digunakan untuk mendefinisikan, mengidentifikasi, dan menghilangkan kegagalan ataau kecacatan pada jenis reject Light Emitting Diode (LED) mati (Unconnect). Selanjutnya dalam pembuatan tabel Failure Mode And Effect Analysis memberikan pembobotan pada nilai severity (S), Occurance (O), dan Detection (D) berdasarkan potensi efek kegagalan, penyebab kegagalan dan proses kontrol saat ini untuk menghasilkan nilai Risk Priority Number (RPN). Berikut tabel severity (S), Occurance (O), dan Detection (D) yang telah peneliti buat sebagai pedoman dalam menetukan pembobotan untuk menghasilkan nilai Risk Priority Number (RPN).

Pada produksi *Printed Circuit Board Light Emitting Diode* (PCB LED) di SMT *Line* melalui 3 tahapan yaitu:

- 1. Printing
- 2. Mounting
- 3. Oven Reflow

Dari ketiga tahapan tersebut memiliki penyebab *reject* berbeda-beda dengan nilai RPN yang didapatkan dari nilai (*severity* (*S*) X *occurance* (*O*) X *detection* (*D*) = *Risk Priority Number* (RPN). Dari 3 proses tersebut memiliki nilai RPN masing-masing yaitu *printing* dengan RPN=192, *Mounting* dengan RPN=252, dan *Oven Reflow* dengan RPN=126. Dapat dilihat pada tabel berikut:

| Part | Process Name | Process Name

Gambar 2 Failure Mode And Effet Analysis (FMEA)

Perbandingan antara *Failure Mode And Effet Analysis* (FMEA) sekarang dan usulan pencegahan *Failure Mode And Effet Analysis* (FMEA) terdapat *recommended action* yang dilakukan sehingga mengurangi *defect* yang ada pada setiap masing-masing proses yaitu:

- A. Proses *printing* yang awalnya memiliki nilai RPN sebesar 192, setelah dilakukan *recommended action* dengan melakukan *cleaning* setelah proses *printing* nilai RPN mengalami penurunan menjadi 40 yang dimana faktor kurang memperhatikan kebersihan *stencil* saat setelah proses printing menjadikan hasil cetakan *solder paste* melebar dari *patten* komponen, sehingga dilakukan pencegahan dengan membersihkan lubang stencill paling maksimal sebanyak 3 kali setelah proses printing.
- B. Proses *Mounting* yang awalnya memiliki nilai RPN sebesar 252, setelah dilakukan *recommended action* dengan pengecekan rutin sebelum running nilai RPN mengalami penurunan menjadi 48, hal ini disebabkan kurangnya dilakukan perawatan katup selenoid penyalur angin pada mesin sehingga menyebabkan tekanan angin yang di perlukan mesin tidak stabil, sehingga dilakukan pencegahan dengan melakukan settingan ketinggian pin pada *table* dan settingan program di mesin pada ketinggian *head nozzle*.
- C. Proses *oven reflow* yang awalnya memiliki nilai RPN sebesar 126, setelah dilakukan *recommended action* nilai RPN mengalami penurunan menjadi 18, Hal tersebut

disebabkan karena tidak adanya perawatan *blower* uap panas dari mesin *oven reflow*, sehingga dilakukan pencegahan dengan melakukan maintenance mesin dan restart mesin apabila terjadi error pada pengaturan suhu.

Dari *recommended action* yang dilakukan sehingga dapat mencegah terjadinya *reject*, sehingga menurunkan tingkat *reject* dari yang sebelumnya.

Gambar 3 Failure Mode And Effet Analysis (FMEA) Sekarang

	Part∤Process Name Models Year(s)Program(s) Core Team			PCBLED 2022 Azhar			Process Respon Key Date	sibility			T Line Jul-22		FMEA Number Page Prepared By FMEA Date (Orig) Rev / date		001 1 of 1 Azhar 34-Jul-22 0			
Т									Process				Responsibility		Action result			_
Ž	Process	Function of Item, Process	Potential Failure Mode	Potential effect(s) of failure	Severity	Potential Cause (s) of Failure	Controls prevention	Оссителсе	Controls Detection	Detection	RPN	Recommended action	& target completion date	Action & completion date	Seventy	Occurence	Detection	RPN
1	Printing	Pencetakan solder paste	Tidak ada solder paste	Tidak ada komponen	8	Lubang stencil tersumbat	Bersihkan lubang stencil jika tersumbat	6	Periksa PCB setelah keluar printing	4	192							
2	Mounting	Pemasanga n komponen	Nozzle terlalu tekan	Komponen retak	9	Pin table terlalu tinggi sehingga pcb melengkung	ketinggian pin pada table	7	Periksa kerataan tinggi pin table pada PCB	4	252							
	Oven Reflow	pelehan solder paste	Suhu terlalu rendah	Komponen tidak connect saat di- test	7	Solder paste tidak meleleh	memasukan PCB kembali ke mesin	6	memeriksa PCB setelah keluar oven reflow	3	126							

Gambar 4 Failure Mode And Effet Analysis (FMEA) Usulan

													FMEA Number		5 001	d		
	Part / Process Name			PCBLED			Process Respons	ibilita		SMT	Line		Page Prepared By		Azhar	Or .	31	_
	Models Year(s)Program(s)			2022			Key Date	and the same		15-3.		_	FMEA Date (Or	ial	14-Jul-22			
	Core Team			Azhar		-						_	Revir date		0			
_								Current	Process	_ [1	Responsibility			Action	result	100
	Process	Function of Item, Process	Potential Failure Mode	Potential effect(s) of failure	Severity	Potential Cause (s) of Failure	Controls prevention	Occurrence	Controls Detection	Detection	RPN	Recommended action	& target completion date	Action & completion date	Severity	Occurence	Detection	2
	Printing	Pencetakan solder paste	Tidak ada solder paste	Tidak ada komponen	8	Lubang stencil tersumbat	Bersihkan lubang stencil jika tersumbat	6	Periksa PCB setelah keluar printing	4	192	Bersihkan lubang stencil maksimal setiap tiga kali printing		21-Jul-22	5	4	2	
	Mounting	Pemasanga n komponen		Komponen retak	9	Pin table terlalu tinggi sehingga pcb melengkung	ketinggian pin pada table	7	Periksa kerataan tinggi pin table pada PCB	4	252	Setting ketinggian pin pada table dan settingan program ketinggian head nozzle	18-Jul-22	21-Jul-22	6	4	2	
	Oven Reflow	pelehan solder paste	Suhu terlalu rendah	Komponen fidak connect saat di- test	7	Solder paste tidak meleleh	memasukan PCB kembali ke mesin	6	memeriksa PCB setelah keluar oven reflow	3	126	restart PC mesin dan melakukan meintenance	19-Jul-22	21-Jul-22	3	3	2	

3.2.6 Perbandingan persentase reject sebelum dan setelah pencegahan

Setelah dilakukan penerapan dari *recommendation action* dan usulan pencegahan, persentase *reject* PCB LED mengalami penurunan dari sebelumnya, yang mana pada penelitian ini dapat menurunkan tingkat persentase reject sesuai yang diharapkan perusahaan.

Tabel 5 Tingkat persentase reject sebelum

Bulan	Produk Baik	Reject	Jumlah Produksi	%reject
Februari 2022	930	70	1000	7
Maret 2022	959	81	1040	8
April 2022	911	79	990	8
Mei 2022	854	56	910	6
Juni 2022	978	62	1040	6
Juli 2022	975	75	1050	7
Total	5607	423	6030	42
Rata-rata	934.50	70.50	1005	7

E-ISSN: 2541-2647 DOI: https://doi.org/10.36352/jt-ibsi.v8i01

Tabel 6 Tingkat persentase reject sesudah

Tue et e Tingnat personause reject sesadan									
Bulan	Ok	Reject	Produksi	%reject					
Agustus 2022	870	53	940	6					
September 2022	959	57	1050	5					
Oktober 2022	911	46	890	5					
Total	2740	156	2880	16					
Rata-rata	913.33	52.00	960	5					

Simpulan

Dari hasil penelitian yang telah diuraikan serta berdasarkan data yang diperoleh dari analisis menggunakan metode *Root couse Fishbone* dan *Failure Mode And Effect Analysis* (FMEA) dalam skripsi ini, maka dapat ditarik kesimpulan upaya pencegahan yang dapat mengurangi *defect* yang ada yaitu dengan memberikan usulan pencegahan dan *recommended action* yang kemudian diterapkan sehingga tingkat *defect* yang terjadi pada setiap masing-masing proses menjadi berkurang. Sehingga dengan berkurangnya tingkat *defect* yang terjadi maka bisa menurunkan persensentase *reject* sesuai dengan yang diharapkan perusahaan.

Saran

Agar penelitian ini berguna dikemudian hari, maka penulis memberikan saran sebagai berikut :

- A. Bagi perusahaan, melakukan perawatan setiap 3 bulan sekali pada setiap mesin yang berproduksi di SMT *Line*, perawatan ini dilakukan bertujuan untuk menjaga performa dan keawetan mesin sehingga dapat mengurangi *reject* sesuai dengan target yang diharapkan.
- B. Bagi peneliti lain, diharapkan untuk lebih melakukan penelitian yang mendalam dengan memperhatikan potensi-potensi yang sangat sering menyebabkan kegagalan produk, dan juga dapat memberikan solusi perbaikan agar tercipta perkembangan dalam penelitian selanjutnya.

DAFTAR PUSTAKA

- Ardyansyah, Risky. (2019). Analisis Penyebab Cacat Produk Menggunakan Metode Failure Mode And Effect Analysis (Fmea) Pada Pt. Sinar Sanata Electronic Industry. Universitas Medan Area.
- Ardiansyah, N., & Wahyuni, H. C. (2018). Analisis Kualitas Produk Dengan Menggunakan Metode FMEA dan Fault Tree Analisys (FTA) Di Exotic UKM Intako . Prozima, 8.
- Bastuti, S., Kurnia, D., & Sumantri, A. (2018). Analisis Pengendalian Kualitas Proses Hot Press Pada Produk Cacat Outsole Menggunakan Metode Statistical Processing Control (Spc) Dan Failure Mode Effect And Analysis (Fmea) Di Pt. Kmk Global Sports 2 . TEKNOLOGI, 8.
- Cahyaningrum, S. M., & Sriyanto. (2018). Identifikasi Penyebab Cacat Produksi Kertas Test Liner Menggunakan Metode Failure Mode & Effect Analysis (Fmea) (Studi Kasus: PT Pura Barutama unit Paper Mill 9). Jurnal Online Universitas Diponegoro, 6.
- Fadhillah, Risky. (2017). Penerapan Lean Six Sigma Dan Fmea Sebagai Upayauntuk Mengurangi Kecacatan Side Arm, Side Board, Side Base, & Leg Pada Bagian Cabinet Case. Universitas Islam Indonesia.

E-ISSN: 2541-2647 DOI: https://doi.org/10.36352/jt-ibsi.v8i01

Ferdinand, A. (2006). *Metode Penelitian Manajemen: Pedoman Penelitian untuk skripsi, Tesis dan Disertai Ilmu Manajemen*. Universitas Diponegoro Semarang.

- Prada, D. P., Rahayuningsih, Sri., Santoso, H. B. (2020). *Analisis Rejected Produk Dalam Proses Return Di PT. Gunawan Fajar Menggunakan Metode FMEA. JURMATIS*, vol. 2(1). http://ojs.unik-kediri.ac.id/index.php/jurmatis/863-3335-1-PB.pdf.
- Rinoza, M., Junaidi, & Kurniawan, F. A. (2021). Analisa Rpn (Risk Priority Number) Terhadap Keandalan Komponen Mesin Kompresordouble Screw Menggunakan Metode FMEA Di Pabrik Semen PT. XYZ. Buletin Utama Teknik, 7.
- Saputra, A. D. (2019). Analisa Penurunan Reject "Produk Bead Forming" Di Departemen Material Pt. Gtd Menggunakan Metode Dmaic (Define, Measure, Analyze, Improve, Control). Universitas Mercu Buana.
- Sari, D. P., Marpaung, K. F., Calvin, T., Mellysa, & Handayani, N. U. (2018). *Analisis Penyebab Cacat Menggunakan Metode Fmea Dan Fta Pada Departemen Final Sanding Pt Ebako Nusantara . Prosiding*, 6.

E-ISSN: 2541-2647 DOI: https://doi.org/10.36352/jt-ibsi.v8i01

Dari hasil penelitian yang telah diuraikan serta berdasarkan data yang diperoleh dari analisis menggunakan metode Root couse Fishbone dan Failure Mode And Effect Analysis (FMEA) dalam skripsi ini, maka dapat ditarik kesimpulan upaya pencegahan yang dapat mengurangi defect yang ada yaitu dengan memberikan usulan pencegahan dan recommended action yang kemudian diterapkan sehingga tingkat defect yang terjadi pada setiap masing-masing proses menjadi berkurang. Sehingga dengan berkurangnya tingkat defect yang terjadi maka bisa menurunkan persensentase reject sesuai dengan yang diharapkan perusahaan.

4 SARAN

Agar penelitian ini berguna dikemudian hari, maka penulis memberikan saran sebagai berikut:

- C. Bagi perusahaan, melakukan perawatan setiap 3 bulan sekali pada setiap mesin yang berproduksi di SMT *Line*, perawatan ini dilakukan bertujuan untuk menjaga performa dan keawetan mesin sehingga dapat mengurangi *reject* sesuai dengan target yang diharapkan.
- D. Bagi peneliti lain, diharapkan untuk lebih melakukan penelitian yang mendalam dengan memperhatikan potensi-potensi yang sangat sering menyebabkan kegagalan produk, dan juga dapat memberikan solusi perbaikan agar tercipta perkembangan dalam penelitian selanjutnya.

5 UCAPAN TERIMA KASIH

Alhamdulillah Puji dan Syukur penulis panjatkan kehadiran Allah SWT, karena atas berkat Rahmat dan Hidayahnya sehingga penyusunan jurnal penelitian ini dapat diselesaikan. Selama penyusunan jurnal penelitian ini, penulis banyak mendapatkan bantuan berupa moril dari berbagai pihak, sehingga pantas penulis memberikan apresiasi berupa ucapan terima kasih, kepada:

Orang tua tercinta, yang selalu dalam lindungan dan rahmat dari Allah SWT, yang selalu senantiasa memberikan dukungan, semangat dan doanya untuk menyelesaikan pendidikan sarjana ini.

Bapak Ir. Refdilzon Yasra, M.T., IPM. Selaku dosen pembimbing 1 dan bapak Ir. Herman, S.T., M.T. Selaku dosen pembimbing 2 yang telah memberikan banyak waktu, petunjukdan saran dalam menyelesaikan jurnal ini. Serta seluruh dosen fakultas teknik dan staff Universitas Ibnu Sina yang telah memberikan ilmu yang sangat berharga. Semoga apa yang penulis buat dapat bermanfaat dalam hal ilmu pengetahuan pada siapapun yang menggunakanya.

6 DAFTAR PUSTAKA

- [1] Ardyansyah, Risky. (2019). Analisis Penyebab Cacat Produk Menggunakan Metode Failure Mode And Effect Analysis (Fmea) Pada Pt. Sinar Sanata Electronic Industry. Universitas Medan Area.
- [2] Bastuti, S., Kurnia, D., & Sumantri, A. (2018). Analisis Pengendalian Kualitas Proses Hot Press Pada Produk Cacat Outsole Menggunakan Metode Statistical Processing Control (Spc) Dan Failure Mode Effect And Analysis (Fmea) Di Pt. Kmk Global Sports 2. TEKNOLOGI, 8.
- [3] Cahyaningrum, S. M., & Sriyanto. (2018). Identifikasi Penyebab Cacat Produksi Kertas Test Liner Menggunakan Metode Failure Mode & Effect Analysis (Fmea) (Studi Kasus: PT Pura Barutama unit Paper Mill 9). Jurnal Online Universitas Diponegoro, 6.