Agustus 2022 | Vol. 1 | No. 1 E-ISSN : 2597-8950

DOI: 10.36352/jik.v3i2

ANALISIS PENGENDALIAN KUALITAS PELINDUNG PIPA (PROTECTOR) DENGAN METODE STATISTICAL PROSES CONTROL (SPC) DI PT.XYZ

Patar Nababan ¹, Nandar Cundara. A², Decky Antony Kifta³

^{1,2}Universitas Ibnu Sina, Jl. Teuku Umar, Lubuk Baja, Kota Batam ³ Program Studi Teknik Industri, Universitas Ibnu Sina, Batam

e-mail:*1810128425196@uis.ac.id,2nandar.cundara@gmail.com,3decky.antony@uis.ac.id

Abstrak

Kualitas produk merupakan syarat mutlak untuk bersaing di era global. Quality control dilakukan untuk menjaga dan meningkatkan kualitas produk sesuai dengan standar perusahaan dan keinginan konsumen. PT XYZ Batam merupakan perusahaan yang bergerak di bidang OCTG bidang pipa seamless dan pelindung pipa khususnya injeksi plastik. Sistem produksi yang digunakan oleh perusahaan ini adalah make to order sehingga jumlah dan spesifikasi produk yang dihasilkan bervariasi sesuai dengan keinginan pelanggan. Penelitian ini bertujuan untuk mengetahui bagaimana analisis pengendalian kualitas menggunakan Statistical Process Control (SPC). Hasil analisis menunjukkan bahwa pengendalian mutu dalam keadaan tidak terkendali atau masih mengalami penyimpangan. Jenis cacat yang paling banyak adalah 764 produk ovality. Dari diagram sebab akibat dapat diketahui bahwa faktor penyebab cacat produk adalah faktor manusia, mesin, bahan baku, dan lingkungan. dan 5W+1H (what, why, where, when, who, how), selain 5W+1H,metode FMEA juga merupak Langkah dalam melakukan perbaikan yang direkomendasikan adalah diadakannya pengantian part dan pengendalian yang lebih ketat dalam perawatan mesin dan cetakan, lebih teliti dalam pemilihan bahan baku, dan kenyamanan tempat produksi, dan memberikan pelatihan bagi karyawan untuk memiliki keterampilan.

Kata kunci: Statistical Proses Control (SPC), 5W+1H, Failure Method Analisis(FMEA)

Abstract

Product quality is an absolute requirement to compete in the global era. Quality control is carried out to maintain and improve product quality in accordance with company standards and consumer desires. PT XYZ Batam is a company engaged in the field of OCTG in the field of seamless pipes and pipe protectors, especially plastic injection. The production system used by this company is make to order so that the number and specifications of the products produced vary according to customer wishes. This study aims to determine how to analyze quality control using Statistical Process Control (SPC). The results of the analysis indicate that the quality control is not under control or is still experiencing deviations. The most common types of defects are 764 ovality products. From the causal diagram, it can be seen that the factors that cause product defects are human, machine, raw materials, and environmental factors. and 5W+1H (what, why, where, when, who, how), in addition to 5W+1H, the FMEA method is also a step in making improvements that are recommended, namely the holding of replacement parts and tighter control in machine and mold maintenance, more thorough in the selection of raw materials, and the convenience of the production site, and providing training for employees to have skills.

Key Word: Statistical Proses Control (SPC), 5W+1H, Failure Method Analysis (FMEA)

PENDAHULUAN

Kualitas menjadi faktor dasar keputusan konsumen dalam memilih produk. Dengan memperhatikan aspek kualitas produk maka tujuan perusahaan untuk memperoleh laba yang optimal dapat terpenuhi sekaligus dapat memenuhi tuntutan konsumen akan produk yang berkualitas dan harga yang kompetitif [1]. PT.XYZ yang beralamat di Kota Batam, Provinsi Kepulauan Riau. Perusahaan ini bergerak dibidang pengolahan pipa minyak dan gas beserta aksesorisnya. Bahan baku pipa merupakan pipa setengah jadi dan diolah menjadi pipa minyak dan gas, dengan karakteristik standar yang bersertifikasi sesuai dengan kebutuhan pelanggan.

Proses produksi produk yang dijalankan PT XYZ dapat dibagi menjadi 12 proses utama yaitu dari mesin injection molding dilanjutkan dengan dengan proses produksi pembuatan *plate* dengan melalui proses uncoiller dilanjutkan ke mesin leveling, setelah itu lanjut ke proses pemotongan di mesin cutting selanjutnya di mesin sharrring lanjut ke mesin rolling. setelah di rolling transfer ke mesin welding (pengelasan), setelah di las maka dilanjutkan proses pengepresan di mesin pressing lanjut ke mesin threading (CNC) untuk pembentukan ulir yang di minta oleh pelanggan, setelah itu ke painting untuk dilakukan pengecetandan proses akhir pengepakan (packing) sebelum dilakukan pengiriman (delivery). Dalam menjalankan kegiatan produksi pelindung pipa harus mengacu pada standar yang sudah di tetapkan oleh API 5CT. pada tabel dibawah ini adalah merupakan persyaratan yang harus dipenuhi dalam meproduksi pelindung pipa yang sesuai dengan standar API 5CT, Biaya proses tidak efisien bisa timbul karena kehilangan kapasitas produksi yang disebabkan oleh kegagalan proses, kerugian karena operasi yang berlebihan. berdasarakan dari data yang diperoleh dalam proses produksi pelindung pipa (*protector*) dari bulan Februari – Maret 2022 rata-rata tingkat kecacatan produk setiap bulannya mencapai 14,9% dari target maksimum reject dari perusahaan yaitu 10 %.

Berdasarkan data diatas maka perlu dilakukan penelitian mengenai cara meminimalkan tingkat kecacatan pada produk pelindung pipa (protector) dengan mengguanakan metode statistical process control (SPC) sehingga kecacatan pada produk yang dihasilkan dari proses produksi dapat diminimalisir sehingga memperoleh profit yang optimal. [2,3].

Diagram pareto menentukan diameter cacat terbesar, Fishbone diagram digunakan untuk menganalisis penyebab terjadinya suatu masalah dari segi, material, environment, method dan machine, metode Failure Mode And Effect Analysis (FMEA) digunakan untuk menganalisa tingkat kegagalan yang timbul (severity), kejadian (occurrence), frekuensi kejadian(occurrence) yang memiliki RPN tertinggi [4].

METODE PENELITIAN

Penelitian ini adalah penelitian kuantitatif yang mana data yang digunakan adalah data primer yaitu data yang dikumpul sendiri oleh peneliti secara langsung dari sumber pertama berupa data cacat produk pada pembuatan pelindung pipa (protekor)[5]. Selain itu penelitian ini juga menggunakan data sekunder yang merupakan data produk cacat pelindung pipa (protector) dan jumlah produksi protector pada bulan maret 2022. Dalam penelitian ini mengunakan dua variabel yaitu variabel idependen (x) yaitu program pngendalian kualitas (quality control), yang dimaksudkan untuk menentuakan kulitas sesui dengan standard. Selanjutnya adalah variabel dependen (y) yaitu kualitas dari produk pelindug pipa (protector). Dalam penelitian ini definisi operasional meliputi proses produksi, standar operasional proseur (SOP), kopasitas produksi, target produksi, cacat (defect), kualitas, pengendalian kualitas, peningkatan kualitas dan pelindung pipa. Metode pengumpulan data dilakukan dengan metode observasi, wawancara dan studi putaka.

Dalam melakukan pengolahan data menggunakan alat bantu statistic yang terdapat pada SPC. Langkah-langkah dalam pengolahan data diawali dengan pengumpulan data melelui lembar

pengecekan, histogram, peta kendali P, diagram pareto, diagram five why, Mencari faktor penyebab yang dominan dengan diagram sebab akibat, Failure motode and Effect analysis (FMEA) dan membuat rekomendasi atau usulan perbaikan kualitas. [6]

HASIL DAN PEMBAHASAN

Standar kegagala produk pelindung pipa yang di terima oleh perusahaan adalah sebesar kurang dari 10% dari jumlah oerder. Dari data yang diperoleh rata-rata produk cacat adlah sebesar 12,2%.

Tabel 1 Data Produksi pelindung Pipa dan Cacat Produk selama Februari-Maret 2022 Dari data Lembar Pengecekan.

Month	Work Order	Size (inch)	Total Production (Pcs)	T otal Reject	Persentase Reject
	WPT22001	7 5/8	2900	407	14,3%
Februari	WPT22004	9 5/8	1500	224	14,93%
rebruari	WPT22020	5	2205	231	10,48%
	WPT22028	7	500	64	12,80%
	WPT22029	7	670	67	10,00%
Maret	WPT22037	5	3150	363	11,52%

Sumber: Tempat penelitian (2022)

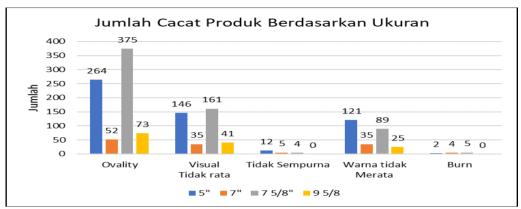
Sedangkan data stratifikasi atau pengelompokan data cacat pelindung pipa ukuran dari pelindung pipa dan jenis cacat ovality, visual tidak rata, produk tidak sempurna, warna tidak merata dan burn (terbakar).

Gambar 1 Cacat Ovality

Gambar 2 Visual Tidak Rata

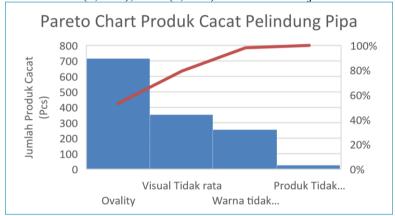
Gambar 3 Tidak sempurna

Gambar 4 Warna Tidak Merata

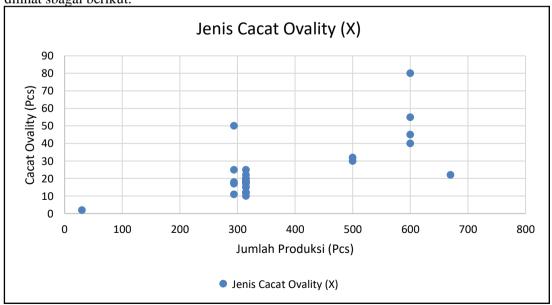

Gambar 5 Burn

Berikut merupakan pengelompokan pencatatan tentang jumlah kecacatan yang terjadi pada tiap ukuran pelindung pipa.

Tabel 2 Stratifikasi Kecacatan Produk Berdasarkan Ukuran Pelindung Pipa

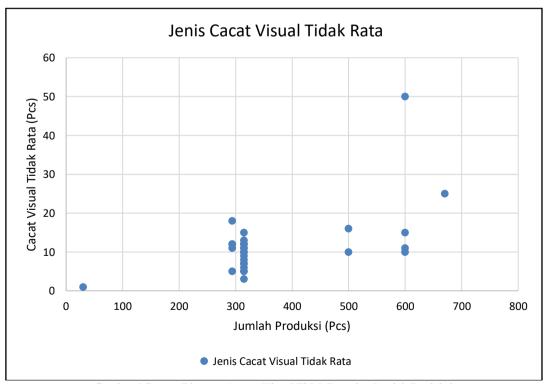

Size	Jumlah produksi	Ovality	Visual Tidak rata	Produk Tidak Sempurna					
5''	5040	264	146	12	121	2	545		
7''	1170	52	35	5	35	4	131		
7 5/8''	4400	375	161	4	89	5	634		
9 5/8	1206	73	41	0	25	0	139		
Total	11816	764	383	21	270	11	1449		

Selanjutnya dari data tabel 2 dapat di tunjukkan dalam tabel histogram untk melihat jenis cacat yang paling sering terjadi.


Grafik 1 Histogram data cacat

Dalam melakukan pengolahan data untuk melihat cacat yang paling sering terjai dengan persentase paling tinggi yaitu ovality (52,69%), Visual tidak rata (25,90), warna tidak merata (18,76%), Produk tidak rata (1,84%), burn (0,81%) dari total 1449 jumlah cacat.

Grafik 2 Pareto Produk Cacat Pelindung Pipa


Berdasarkan grafik pareto terdapat dua jenis cacat yang menjadi perhatian yaitu Ovality dan visual tidak sempurna. Untuk melihat korelasi antar dua jenis cacat terebut dengan total produksi dapat dilihat sbagai berikut.

Grafik 3 Scatter Diagram Antara Visual Tidak Rata dan Jumlah Produksi

Tabel 3 Perhitungan Korelasi Antara Cacat Fisik dan Jumlah Produksi

1 400	Tabel 5 Tellitungan Roleiasi Antara Cacat Fisik dan Junian Froduks.										
No Work Order	Jumlah Produksi (Y)	Jenis Cacat Ovality (X)	Y^2	X^2	XY						
WPT22001	600	80	360000	6400	2304000000						
WPT22001	600	45	360000	2025	729000000						
WPT22001	600	55	360000	3025	1089000000						
WPT22001	600	40	360000	1600	576000000						
WPT22001	500	32	250000	1024	256000000						
WPT22004	294	50	86436	2500	216090000						
WPT22004	294	17	86436	289	24980004						
WPT22004	294	25	86436	625	54022500						
WPT22004	294	18	86436	324	28005264						
WPT22004	294	11	86436	121	10458756						
WPT22004	30	2	900	4	3600						
WPT22020	315	25	99225	625	62015625						
WPT22020	315	18	99225	324	32148900						
WPT22020	315	15	99225	225	22325625						
WPT22020	315	12	99225	144	14288400						
WPT22020	315	17	99225	289	28676025						
WPT22020	315	20	99225	400	39690000						
WPT22020	315	18	99225	324	32148900						
WPT22028	500	30	250000	900	225000000						
WPT22029	670	22	448900	484	217267600						
WPT22037	315	20	99225	400	39690000						
WPT22037	315	18	99225	324	32148900						
WPT22037	315	22	99225	484	48024900						
WPT22037	315	18	99225	324	32148900						
WPT22037	315	12	99225	144	14288400						
WPT22037	315	19	99225	361	35820225						
WPT22037	315	15	99225	225	22325625						
WPT22037	315	12	99225	144	14288400						
WPT22037	315	18	99225	324	32148900						
WPT22037	315	10	99225	100	9922500						
Jumlah	10925	716	4508805	24482	6241927949						

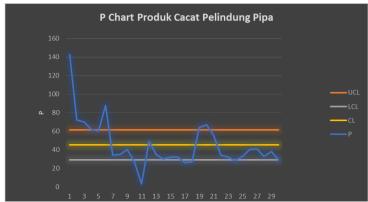
Gambar 4 Scatter Diagram Antara Visual Tidak Rata dan Jumlah Produksi

Tabel 5 Perhitungan Korelasi Antara Cacat Visual Tidak Rata dan Jumlah Produksi

No Work	Jumlah	Jenis Cacat Visual Tidak					
Order	Produksi	Rata	Y^2	X^2	XY		
WPT22001	600	50	360000	2500	900000000		
WPT22001	600	15	360000	225	81000000		
WPT22001	600	10	360000	100	36000000		
WPT22001	600	11	360000	121	43560000		
WPT22001	500	16	250000	256	64000000		
WPT22004	294	18	86436	324	28005264		
WPT22004	294	12	86436	144	12446784		
WPT22004	294	5	86436	25	2160900		
WPT22004	294	12	86436	144	12446784		
WPT22004	294	11	86436	121	10458756		
WPT22004	30	1	900	1	900		
WPT22020	315	10	99225	100	9922500		
WPT22020	315	7	99225	49	4862025		
WPT22020	315	10	99225	100	9922500		
WPT22020	315	12	99225	144	14288400		
WPT22020	315	12	99225	144	14288400		
WPT22020	315	3	99225	9	893025		
WPT22020	315	6	99225	36	3572100		
WPT22028	500	10	250000	100	25000000		
WPT22029	670	25	448900	625	280562500		
WPT22037	315	15	99225	225	22325625		
WPT22037	315	8	99225	64	6350400		
WPT22037	315	5	99225	25	2480625		
WPT22037	315	5	99225	25	2480625		
WPT22037	315	11	99225	121	12006225		
WPT22037	315	9	99225	81	8037225		
WPT22037	315	13	99225	169	16769025		
WPT22037	315	11	99225	121	12006225		
WPT22037	315	12	99225	144	14288400		
WPT22037	315	7	99225	49	4862025		
			450880				
Jumlah	10925	352	5	6292	1654997238		

Dari kedua tabel dapat di simpulakan dengan mengguanakn rumus koefisien korelasi antara kedua cacat tersebut menggunan rumus berikut.

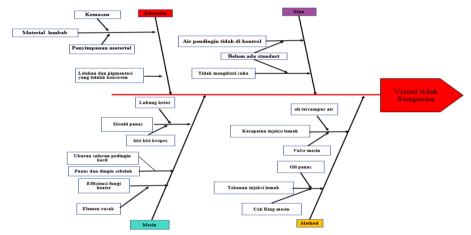
$$r = \frac{n \sum XY - (\sum X)(\sum Y)}{\sqrt{[n \sum X^2 - (\sum X)^2]}[n \sum Y^2 - (\sum Y)^2]}$$

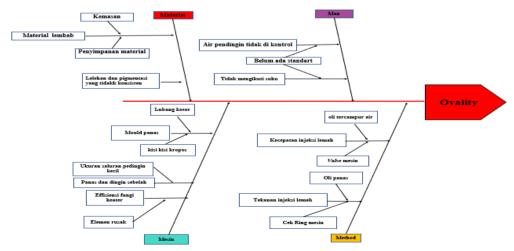

Koefisien korelasi ovality dan jumlah produksi yang diperoleh adalah besar dari 1 yaitu sebesar 99683,26, sedangkan koefisien korelasi ccat visual tidak rata dengan jumlah produksi yang diperoleh adalah besar dari 1 yaitu sebesar 27568,86, sehingga korelasinya memiliki korelasi positif kuat.

Dalam pengendalian kualitas dibuat sebuah peta kendali kualitas yang mana peta kendali adalah peta kendali P (P-chart). Dalam pembuatabn peta kendali harus ditetapkan dulu LCL, CL dan UCL. Tingkat kepercayaan yang digunakan adalah k=2.

Tabel 6 Penentuan garis batas P Chart

Koefisien (k)	Standard	UCL	CL	LCL
	Deviasi			
2 (95%)	25,28128	61,6576	45,300	28,9424


``


Gambar 5 Peta Kendali P (*P-Chart*)

Dari grafik diatas terlihat bahwa proses produksi masih belu terkendali dengan baik. Oleh sebab itu masih diperlukan analisis lebih lanjut mengapa penyimpangan ini terjadi dengan cara menghilangkan persentase cacat yang diluar batas kendali (*out of control*).

Setelah dilakukan analisa menggunakan diagram *five why* (5 *why*) maka diteruskan kedalam *diagram fishbone*

Gambar 6 Cause and Effect Diagram Kecacatan Produk visual tidak sempurna

Gambar 7 Cause and Effect Diagram Kecacatan Produk ovality

Dari diagram *fishbone* ini di hasilkan faktor-faktor yang menjadi penyebab utama dari terjadinya tingginya penggunaan *abrasive cutting disc*. Dengan menggunakan metode FMEA dialkukan pembobotan prioritas yang harus dilakukan perbaikan.

Tabel 7 FMEA

KATEGO RI	Proses	Potensi kegagalan	Dampak kegagalan	Penyebab Potensi Difect	S	0	D	RPN	Rank	Penegendalian saat ini	Usulan Perbaikan
MESIN	Moulding	Visual tidak sempurna	p 0	Lobang nozzle mould sudah tidak standart	8	5	5	200	1	Nozzle saat ini dimodifikasi dengan menambahkan ring pada nozle	Penggantian nozzle yng baru
		Visual tidak sempurna	Recycle material menumpu k	Suhu rate machine belum standar.	4	4	2	48	4	Masih menggunakan pengalaman operator	Lakuakn penelitian untuk menentukan standar suhu rate machine
		Visual tidak sempurna	Dimensi produk tidak sama	Ceck ring aus	2	6	2	24	1	Belum ada standard pengontrolan	Dibuatkan jadwal pemeliharaan ceck ring
		Ovality	produk	Produk dari mold jatuh pada landasan yg keras	4	5	5	100	3	Belum ada dibuat landasan yang baik	Buat landasan agar produk jatuh tidak terbentur keras
PERSONI L	Moulding	Ovality	Proses yang berulang	Tidak ada control suhu pendingin mold	5	5	4	100	3	Belum ada control suhu	Dibuatkan check sheet pengontrolan suhu
MATERI AL	Moulding	Warna Tidak merata	P 0	Campuran material biji plastik tidak homogen	4	6	3	72	4	Masih mengacu pada pengalaman	Dibuatkan standard campuran biji plastic dan pewarna
		Visual tidak sempurna	Material terbuang	Material biji plastic lembab	4	2	2	16	1	Dikeringkan secara manual atau dengan bantuan cahaya lampu heater ceramic	Pengadaan mesin pengering
METODE		Warna tidak Merata	Material terbuang	Material plastic bekas tercampur dengan bahan lain	4	4	7	168	2	Belum ada pemisahan antara jenis biji plastic dan pewarna	Diabuatkan tempat khusus untuk jenis material.

Untuk mengetahui kemampuan proses dari pembuatan pelindung pipa dihitung berdasarkan kelayakan proses berdasarkan julah produk yang gagal.

Sample Data (user inputs):									
Mean x-bar	0,1244	Upper Specification Limit USL	1,3932						
Standard Deviation s	2	Lower Specification Limit LSL	0						
Sample Size n	30	Confidence Level (enter .95 for 95%)	95,0%						
Sigma Shift (typically +1.5 for long term data)	1,5								
Process Sigma Level Results:		Process Capability Results:							
Expected dpm > USL	262.909,9	Cp, Pp	0,12						
Expected % > USL	26,29%	Lower Limit Cp, Pp	0,09						
Expected dpm < LSL	475.201,8	Upper Limit Cp, Pp	0,15						
Expected % < LSL	47,52%	Cpu, Ppu	0,21						
Expected dpm (overall)	738.111,7	Cpl, Ppl	0,02						
Expected yield (overall)	26,19%	Cpk, Ppk	0,02						
		Lower Limit Cpk, Ppk	-0,10						
Process Sigma Level	0,862	Upper Limit Cpk, Ppk	0,14						

Tabel 7 Analisa Capability

Hasil yang diperoleh bahwa saat ini dikategorikan masih dibawah kemampuan proses untuk memproduksi pelindung pipa yang diharapkan. Dari hasil Analisa menggunakan FMEA dilakukan perbaian untuk mengurangi cacat visual produk tidak sempurna dengan melakukan pengantian nozzle.

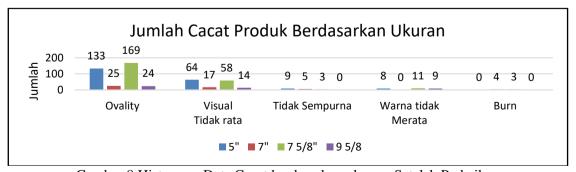
Gambar 6 Nozzle Mesin Yang Sudah Dimakan Usia

Gambar 7 Ilustrasi Assembly Spure Bushing Dan Nozzle

Sedangkan untuk mengurangi poduk cacat prduk ovality salah satu upaya yang dilakukan untuk menghindari produk ovality adalah dengan menciptakan batalan produk pada saat jadtuh dari cetakan agar tehindar dari benturan.

Gambar 8 Ilustrasi Penempatak Bantalan Material pada Lantai

Agar supaya perawatan mesin dan control air pendingin terjadwal dengan baik maka dibuatlah jadwal maitenance yang diharapkan mesin bisa terawat dengan baik.


	MACHINE	200	Moule	ding 03	140%			7			100	eli des	2000	1000	70%	3 - 2	48	9.7	330	2.								
-	Model / NC type	IS	550GS-5	9B/81R	064	3 AUTONOMOUS MAINTENANCE																						
ary.	Safety Kasariametan	-	Clean?		Visual trapection	-		(A) (M) (TO						Air blow Samprot angin														
	Daily I/ Shift	0	-		MEDILY / Minggi		0				COL					_	DAYS			T	DAYS							
			COLUMN														1 4 4 4 1					3 0 7						
	LOCATION / LOKABI	Per	t l'aumpenen		Salety	Key		Westly	Second.	ELEM	8	3	1=	2- 1	10	2-	ы	1- 2-	81	1.	W N	154	24	m 3	- 2-	201	34	24 h
3)	Ferei Operatori	Suley Device Energe		04	Segle ITE	0	14		60		7511					П	T	Т		П	т	Т	П	T	T			т
3	Parel Specialist	Horitor 6 kg			Napole FFE		.00							\top	П	П	T	\top	П	П	т	\top	П	†	T	П	П	\top
3	hydrada power orti	hydrak	of .	REPORT	Regular RPS	8,	10						П	\top		П	T		П	П	т	т	П	\top	Т		П	\top
9	Pressure injection	imden	ire		Supple PFE		76		40				П	\top		П	T	Т		П	т	Т	П	T	Т		П	T
0	Water cooler	Case year	new	NO.	Replay FFE	1			10				П	\top	Т	П	✝	т	П	П	т	т	П	\top	т	П	П	\top
٥	Power peck L	Pump		(A)	Page PFS	×							П		т	П	T	\top		П	†	т	П	$^{+}$	\top	П	П	\top
3	Pour pak I	Purp			Regist 916	7	- pa				-		П	\top		П	T	T		П	†	т	П	†	\top	П		\top
9	Hydrack years or	Distriction	ryadin .	0	Topas IPE	-	-		10				П	\top	т	П	7	\top	т	\Box	$^{+}$	т	П	$^{+}$	т	П	П	\top
10	rigentian sale	Maler Look	tare		Pages 179	18					8		П	\top		П	T	T	П	П	1	т	П	\top	T		П	\top
0	Hydradi power and	. Harried with	corp		Tagair FFS		20						П	\top		П	T	\top		П	\top	Т	П	т	Т		П	\top
1	Chrysia	Al swit	-	143	Napiu Mt		36						П	\top	П	П	T	т		\Box	\top	т	П	\top	т	П	П	\top
0	rightable power yet had	nytek	16	80 TH.	Report PTE	18	14		. 40	-	3						T						П					
8	Chrystile	21001	ie .	FAW DECE	Repair Mit	×		-	200				X	X	X	X	X	XX	X	X	N/A	1	X	X>	X	X	X	X
9	Chrysite	Fector)	15		Ropes PEE + Law			-	200			S	X	XX	X	X	X	XX	X	X	S	ď	(XX	S	X	X	X	X
_								Chica Bu	Operator ()	way t	_			1	T	m	7	7		T	T	1	T	7	T	T		-

Tabel 12 Check Sheet Daily & Weekly Machine

Setelah dilakukan perbaikan terdapat penurunan jumlah produk cacat dari produksi pelindung pipa.

Tabel 8 Stratifikasi Kecacatan Setelah Dilakuakan Perbaikan

SIZE	JUMLAH PRODUKSI	OVALITY	VISUAL TIDAK RATA	TIDAK SEMPURNA	WARNA TIDAK MERATA	BURN	JUMLAH PRODUK CACCAT
5''	5040	133	64	9	8	0	545
7''	1170	25	17	5	0	4	131
7 5/8''	4400	169	58	3	11	3	634
9 5/8	1206	24	14	0	9	0	139
TOTAL	11816	351	153	17	28	7	1449

Gambar 8 Histogram Data Cacat berdasarkan ukuran Setelah Perbaikan

SIMPULAN

Setelah diakuakn penelitian diketahui peneyebab terjadinya produk cacat pelindung pipa (protector) terjadi dikarenakan terdapat jenis cacat ovality (52,69%) dan Visual tidak rata (25,9%) yang merupakan penyumbang cacat produk terbesar. Bersdasarkan Analisa *fish bor* diketahui faktor penyebab kecacatan produk tidak sempurna pada saat proses produksi minimnya system saluran injeksi pada mould dies dan lemahnya kecepatan ijeksi, pendinginan mould die yang tidak sempurna dan ujung nozzle mesin moulding yang sudah rusak akibat dari pemakaian yang lama usia. Setelah dilakuan perbaikan terdapat penurunan jumlah produk pelindung pipa (protector) cacat mencadi 5% yang sebelumnya 12,2%, sehingga lebih rendah dari target yang disyaratkan oleh perusahaan yaitu 10%. Sebelum dilakukan perbaikan kemampuan proses masih dikategorian masih belum mampu untuk memenuhi standard yang diharapkan.

SARAN

Untuk selanjutnya bisa dilakukan penelitian lanjutan untuk factor-faktor yang mempengaruhi terjadinya produk cacat pada produk pelindung pipa yang belum bisa dilakukan pada pada saat ini.

DAFTAR PUSTAKA

- [1] Retno Widuri, Jaryono, Ahmad Arif Budiman. (2019). MENGELOLA KUALITAS DENGAN STATISTICAL PROCESS CONTROL. SUSTAINABLE COMPETITIVE ADVANTAGE-9 (SCA-9) FEB UNSOED, 249-258.
- [2] Joseph M Juran, A. B. (1999). JURAN'S QUALITY HANDBOOK. New York: R. R. Donnelley & Sons Company.
- [3] Md.Asadujjaman*, Md. Safiul Kabir, Md. Arifuzzaman and Md. Mosharraf Hossain. (2015). Statistical Process Control (SPC) Tools for Minimizing the Moulding. International Conference on Mechanical, Industrial and Materials Engineering 2015, 1-6.
- [4] AIAG (2008). Potential Failure Mode and Effect Analysis (FMEA), 4th Edition. Automotive Industry Action Group. ISBN 9781605341361.
- [5] Sugiyono.(2013) Metode Penelitian Pendidikan Pendekatan Kuantitatif, Kualitatif, dan R&D. Bandung: Alfabeta.
- [6] Widianti,T dan Firdaus,M (2014). Penilaian Risiko Instansi Pemerintah dengan *Fuzzy Failure Mode and Effect Analysis*. Lembaga Ilmu Pengetahuan Indonesia(LIPI). Menteng, Jakarta: Lipi Press.